Ensemble of Differential Equations using Pareto Optimal for Traffic Forecasting
نویسندگان
چکیده
The formal and empirical proof is that the ensemble of the learning models performs better than the single one. In order to construct the ensemble of the system of ordinary differential equations (ODEs), the two problems (diversity and accuracy of ODEs) are considered. In the paper, we estimate experimentally the model ensemble using multi-objective optimization. This paper presents a pareto optimal approach for identifying a family of the additive tree models which are used to reconstruct and identify the system of ordinary differential equations to predict the small-time scale traffic measurements data. We employ the tree-structure based evolution algorithm and particle swarm optimization (PSO) to evolve the architecture and the parameters of the additive tree model. The small-scale traffic measurements data is used to test ODE ensemble, and experimental results reveal that the proposed method is feasible and efficient for forecasting the time series.
منابع مشابه
Pareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm
Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...
متن کاملA Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers
Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...
متن کاملPareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm
The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...
متن کاملEnsemble of Flexible Neural Tree and Ordinary Differential Equations for Small-time Scale Network Traffic Prediction
Accurate models play important roles in capturing the salient characteristics of the network traffic, analyzing and simulating for the network dynamic, and improving the predictive ability for system dynamics. In this study, the ensemble of the flexible neural tree (FNT) and system models expressed by the ordinary differential equations (ODEs) is proposed to further improve the accuracy of time...
متن کاملMulti-Metric Optimization Using Ensemble Tuning
This paper examines tuning for statistical machine translation (SMT) with respect to multiple evaluation metrics. We propose several novel methods for tuning towards multiple objectives, including some based on ensemble decoding methods. Pareto-optimality is a natural way to think about multi-metric optimization (MMO) and our methods can effectively combine several Pareto-optimal solutions, obv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013